Growth Arrest-Specific 6 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy.

نویسندگان

  • Yi-Fan Zhao
  • Da-Chun Xu
  • Guo-Fu Zhu
  • Meng-Yun Zhu
  • Kai Tang
  • Wei-Ming Li
  • Ya-Wei Xu
چکیده

Growth arrest-specific 6 (GAS6) is a member of the vitamin K-dependent protein family that is involved in the regulation of the cardiovascular system, including vascular remodeling, homeostasis, and atherosclerosis. However, there is still no study that systemically elucidates the role of GAS6 in cardiac hypertrophy. Here, we found that GAS6 was upregulated in human dilated cardiomyopathic hearts, hypertrophic murine hearts, and angiotensin II-treated cardiomyocytes. Next, we examined the influence of GAS6 expression in response to a cardiac stress by inducing chronic pressure overload with aortic banding in wild-type and GAS6-knockout mice or cardiac-specific GAS6 overexpressing mice. Under basal conditions, the GAS6-knockout mice had normal left ventricular structure and function but after aortic banding, the mice demonstrated less hypertrophy, fibrosis, and contractile dysfunction when compared with wild-type mice. Conversely, cardiac-specific overexpression of GAS6 exacerbated aortic banding-induced cardiac hypertrophy, fibrosis, and dysfunction. Furthermore, we demonstrated that GAS6 activated the mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated kinase 1/2 pathway during pressure overload-induced cardiac hypertrophy, and the pharmacological mitogen-activated protein kinase kinase 1/2 inhibitor U0126 almost completely reversed GAS6 overexpression-induced cardiac hypertrophy and fibrosis, resulting in improved cardiac function. Collectively, our data support the notion that GAS6 impairs ventricular adaptation to chronic pressure overload by activating mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated kinase 1/2 signaling. Our findings suggest that strategies to reduce GAS6 activity in cardiac tissue may be a novel approach to attenuate the development of congestive heart failure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic changes of hemodynamic parameters and cardiac transcription of sirtuins in adaptive and mal-adaptive phases of pressure overload-induced hypertrophy in rats

Introduction: The aim of the study was to investigate the structural and hemodynamic changes as well as cardiac transcriptional profile of the key regulatory proteins, sirtuins family (SIRT1-7), in adaptive and mal-adaptive phases of left ventricular hypertrophy (LVH). Methods: LVH was induced in male Wistar rats (190±20g) by abdominal aortic banding. The third and sixteenth weeks post-surgery ...

متن کامل

Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents.

Although many animal studies indicate insulin has cardioprotective effects, clinical studies suggest a link between insulin resistance (hyperinsulinemia) and heart failure (HF). Here we have demonstrated that excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. Chronic pressure overload induced hepatic insulin resistance and plasma insuli...

متن کامل

Cardiac-Specific EPI64C Blunts Pressure Overload-Induced Cardiac Hypertrophy.

The calcium-responsive molecule, calcineurin, has been well characterized to play a causal role in pathological cardiac hypertrophy over the past decade. However, the intrinsic negative regulation of calcineurin signaling during the progression of cardiomyocyte hypertrophy remains enigmatic. Herein, we explored the role of EPI64C, a dual inhibitor of both Ras and calcineurin signaling during T-...

متن کامل

The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling

Tumour necrosis factor receptor-associated factor 6 (TRAF6) is a ubiquitin E3 ligase that regulates important biological processes. However, the role of TRAF6 in cardiac hypertrophy remains unknown. Here, we show that TRAF6 levels are increased in human and murine hypertrophied hearts, which is regulated by reactive oxygen species (ROS) production. Cardiac-specific Traf6 overexpression exacerba...

متن کامل

1, 25 Dihydroxyvitamin D3 Protects the Heart Against Pressure Overload-induced Hypertrophy without Affecting SIRT1 mRNA Level

Background and Aims: There has been scant information concerning antihypertrophic effects of vitamin D specifically on its cellular and molecular mechanisms. Sirtuin 1 (SIRT1) is regarded as a key deacetylase enzyme in cardiomyocytes which applies potential cardioprotective effects by functional regulation of different proteins. This study aimed to evaluate the effects of 1, 25-dihydroxyvitamin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 67 1  شماره 

صفحات  -

تاریخ انتشار 2016